SAFE USE OF DIGITAL MEDICAL DATA OF HIGH-TECH DIAGNOSTIC EXAMINATIONS IN EXPERT SIMULATION BASED ON VIRTUAL TWINS

Authors

  • Strelnykov Mykhailo Candidate of Medical Sciences, Head of the Laboratory for the Study of Problems of Comprehensive Rehabilitation of the State Institution "Kundiev Institute of Occupational Medicine of the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine Author ORCID Icon https://orcid.org/0009-0006-1376-6664
  • Horobets Maria Researcher of the Laboratory for the Study of Problems of Complex Rehabilitation, MDF of the Centre for Comprehensive Rehabilitation of the State Institution "Institute of Occupational Medicine named after Y.I. Kundiev of the National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine Author ORCID Icon https://orcid.org/0009-0008-3756-1553
  • Kostenko Viktoria Bachelor, Ministry of Justice of Ukraine Author ORCID Icon https://orcid.org/0009-0006-5939-6451

DOI:

https://doi.org/10.69635/mssl.2025.1.2.28

Keywords:

Digital Twin, Magnetic Resonance Imaging, Medical Digital Data, MRI/CT Falsification, Privacy, Cybersecurity, Expert Medicine, Zero Trust, Multimodal Artificial Intelligence, GDPR, HIPAA

Abstract

The article discusses the prerequisites for the safe use of digital medical data of high-tech diagnostic examinations, primarily magnetic resonance imaging (MRI), in expert medical modelling based on virtual patient twins (Digital Twin). Based on the analysis of modern research on privacy, security, and ethics of digital twins in medicine, cybersecurity, and the metaverse, the composition of the main threats has been clarified: falsification of images and metadata, personal data leaks, and non-transparent secondary use of information. A conceptual architecture of a medical digital twin for expert and forensic purposes is proposed, which integrates cryptographically secure storages, event logs, algorithms for detecting fake MRI data, and legal information processing policies. For quantitative assessment of risks, a probabilistic model has been built, as well as an optimization setting of the choice of technical and organizational protection measures. For automated data integrity control, a combination of convolutional and recurrent neural network (CNN+LSTM) for image analysis and an autoencoder with LSTM (AE+LSTM) for monitoring metadata sequences and access logs were used. It is shown how the proposed model is consistent with the requirements of the legislation of Ukraine on personal data protection, EU Regulation 2016/679 (GDPR) and the US HIPAA act and can be implemented within the framework of the Zero Trust architecture in medical information systems. The practical result of the work is the formation of a holistic methodology for the design of medical digital twins, focused on the expert use of MRI data, which minimizes legal risks and increases the reliability of conclusions.

References

Vallée, A. (2025). Digital Twins for Personalized Medicine Require Epidemiological Data and Mathematical Modeling: Viewpoint.. Journal of medical Internet research, 27, e72411 . https://doi.org/10.2196/72411.

Li, X., Loscalzo, J., Mahmud, A., Aly, D., Rzhetsky, A., Zitnik, M., & Benson, M. (2025). Digital twins as global learning health and disease models for preventive and personalized medicine. Genome Medicine, 17. https://doi.org/10.1186/s13073-025-01435-7.

Fischer, R., Volpert, A., Antonino, P., & Ahrens, T. (2024). Digital patient twins for personalized therapeutics and pharmaceutical manufacturing. Frontiers in Digital Health, 5. https://doi.org/10.3389/fdgth.2023.1302338.

Roopa, M., & Venugopal, K. (2025). Digital Twins for Cyber-Physical Healthcare Systems: Architecture, Requirements, Systematic Analysis, and Future Prospects. IEEE Access, 13, 44963-44996. https://doi.org/10.1109/access.2025.3547991.

Padoan, A., & Plebani, M. (2024). Dynamic mirroring: unveiling the role of digital twins, artificial intelligence and synthetic data for personalized medicine in laboratory medicine. Clinical Chemistry and Laboratory Medicine (CCLM), 62, 2156 - 2161. https://doi.org/10.1515/cclm-2024-0517.

Laubenbacher, R., Mehrad, B., Shmulevich, I., & Trayanova, N. (2024). Digital twins in medicine. Nature computational science, 4 3, 184-191 . https://doi.org/10.1038/s43588-024-00607-6.

Katsoulakis, E., Wang, Q., Wu, H., Shahriyari, L., Fletcher, R., Liu, J., Achenie, L., Liu, H., Jackson, P., Xiao, Y., Syeda-Mahmood, T., Tuli, R., & Deng, J. (2024). Digital twins for health: a scoping review. NPJ Digital Medicine, 7. https://doi.org/10.1038/s41746-024-01073-0.

Boulos, M., & Zhang, P. (2021). Digital Twins: From Personalised Medicine to Precision Public Health. Journal of Personalized Medicine, 11. https://doi.org/10.3390/jpm11080745.

Zhang, K., Zhou, H., Baptista‐Hon, D., Gao, Y., Liu, X., Oermann, E., Xu, S., Jin, S., Zhang, J., Sun, Z., Yin, Y., Razmi, R., Loupy, A., Beck, S., Qu, J., & Wu, J. (2024). Концепції та застосування цифрових двійників в охороні здоров'я та медицині. Patterns , 5. https://doi.org/10.1016/j.patter.2024.101028 .

Björnsson, B., Borrebaeck, C., Elander, N., Gasslander, T., Gawel, D., Gustafsson, M., Jörnsten, R., Lee, E., Li, X., Lilja, S., Martínez-Enguita, D., Matussek, A., Sandström, P., Schäfer, S., Stenmarker, M., Sun, X., Sysoev, O., Zhang, H., & Benson, M. (2019). Digital twins to personalize medicine. Genome Medicine, 12. https://doi.org/10.1186/s13073-019-0701-3.

Roopa, M., & Venugopal, K. (2025). Digital Twins for Cyber-Physical Healthcare Systems: Architecture, Requirements, Systematic Analysis, and Future Prospects. IEEE Access, 13, 44963-44996. https://doi.org/10.1109/access.2025.3547991.

Sun, T., He, X., Song, X., Shu, L., & Li, Z. (2022). Цифровий двійник у медицині: ключ до майбутнього охорони здоров'я?. Frontiers in Medicine , 9. https://doi.org/10.3389/fmed.2022.907066 .

Diniz, P., Grimm, B., Garcia, F., Fayad, J., Ley, C., Mouton, C., Oeding, J., Hirschmann, M., Samuelsson, K., & Seil, R. (2025). Digital twin systems for musculoskeletal applications: A current concepts review.. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. https://doi.org/10.1002/ksa.12627.

Cellina, M., Ce’, M., Alì, M., Irmici, G., Ibba, S., Caloro, E., Fazzini, D., Oliva, G., & Papa, S. (2023). Digital Twins: The New Frontier for Personalized Medicine?. Applied Sciences. https://doi.org/10.3390/app13137940.

Vallée, A. (2023). Digital twin for healthcare systems. Frontiers in Digital Health, 5. https://doi.org/10.3389/fdgth.2023.1253050.

Ganesan, K., & Ganesan, K. (2025). AI-Driven Digital Twins: Real-Time Multimodal Data Integration for Personalized Therapeutic Optimization in Healthcare. International Journal of Innovative Science and Research Technology. https://doi.org/10.38124/ijisrt/25may895.

Coorey, G., Figtree, G., Fletcher, D., Snelson, V., Vernon, S., Winlaw, D., Grieve, S., McEwan, A., Yang, J., Qian, P., O’Brien, K., Orchard, J., Kim, J., Patel, S., & Redfern, J. (2022). The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. NPJ Digital Medicine, 5. https://doi.org/10.1038/s41746-022-00640-7.

Shen, S., Qi, W., Liu, X., Zeng, J., Li, S., Zhu, X., Dong, C., Wang, B., Shi, Y., Yao, J., Wang, B., Jing, L., Cao, S., & Liang, G. (2025). From virtual to reality: innovative practices of digital twins in tumor therapy. Journal of Translational Medicine, 23. https://doi.org/10.1186/s12967-025-06371-z.

Giansanti, D., & Morelli, S. (2025). Exploring the Potential of Digital Twins in Cancer Treatment: A Narrative Review of Reviews. Journal of Clinical Medicine, 14. https://doi.org/10.3390/jcm14103574.

Wang, Y., Lu, Y., Xu, Y., , Z., Xu, H., Du, B., Gao, H., & Wu, J. (2024). TWIN-GPT: Digital Twins for Clinical Trials via Large Language Model. ACM Transactions on Multimedia Computing, Communications and Applications. https://doi.org/10.1145/3674838.

Vallée, A. (2025). Digital Twins for Personalized Medicine Require Epidemiological Data and Mathematical Modeling: Viewpoint.. Journal of medical Internet research, 27, e72411 . https://doi.org/10.2196/72411.

Vallée, A. (2023). Digital twin for healthcare systems. Frontiers in Digital Health, 5. https://doi.org/10.3389/fdgth.2023.1253050.

Huang, L., Pan, L., Wu, C., Tian, M., Li, Q., Peng, Y., Li, Q., & Li, Y. (2024). Application and development prospect of digital twin in the forensic identification of cardiovascular diseases. Digital Medicine. https://doi.org/10.1097/dm-2024-00013.

Gilbert, S., Drummond, D., Cotte, F., & Ziemssen, T. (2025). Editorial: Digital twins in medicine—transition from theoretical concept to tool used in everyday care. Frontiers in Digital Health, 7. https://doi.org/10.3389/fdgth.2025.1573727.

Allen, A., Siefkas, A., Pellegrini, E., Burdick, H., Barnes, G., Calvert, J., Mao, Q., & Das, R. (2021). A Digital Twins Machine Learning Model for Forecasting Disease Progression in Stroke Patients. Applied Sciences. https://doi.org/10.3390/app11125576.

Grieb, N., Schmierer, L., Kim, H., Strobel, S., Schulz, C., Meschke, T., Kubasch, A., Brioli, A., Platzbecker, U., Neumuth, T., Merz, M., & Oeser, A. (2023). A digital twin model for evidence-based clinical decision support in multiple myeloma treatment. Frontiers in Digital Health, 5. https://doi.org/10.3389/fdgth.2023.1324453.

Li, X., Loscalzo, J., Mahmud, A., Aly, D., Rzhetsky, A., Zitnik, M., & Benson, M. (2025). Digital twins as global learning health and disease models for preventive and personalized medicine. Genome Medicine, 17. https://doi.org/10.1186/s13073-025-01435-7.

Vallée, A. (2025). Digital Twins for Personalized Medicine Require Epidemiological Data and Mathematical Modeling: Viewpoint. Journal of medical Internet research, 27, e72411. https://doi.org/10.2196/72411.

Huang, L., Pan, L., Wu, C., Tian, M., Li, Q., Peng, Y., Li, Q., & Li, Y. (2024). Application and development prospect of digital twin in the forensic identification of cardiovascular diseases. Digital Medicine. https://doi.org/10.1097/dm-2024-00013.

Ren, Y., Pieper, A., & Cheng, F. (2025). Utilization of precision medicine digital twins for drug discovery in Alzheimer's disease. Neurotherapeutics, 22. https://doi.org/10.1016/j.neurot.2025.e00553.

Li, X., Loscalzo, J., Mahmud, A., Aly, D., Rzhetsky, A., Zitnik, M., & Benson, M. (2025). Digital twins as global learning health and disease models for preventive and personalized medicine. Genome Medicine, 17. https://doi.org/10.1186/s13073-025-01435-7.

Cellina, M., Ce’, M., Alì, M., Irmici, G., Ibba, S., Caloro, E., Fazzini, D., Oliva, G., & Papa, S. (2023). Digital Twins: The New Frontier for Personalized Medicine? Applied Sciences. https://doi.org/10.3390/app13137940.

Huang, L., Pan, L., Wu, C., Tian, M., Li, Q., Peng, Y., Li, Q., & Li, Y. (2024). Application and development prospect of digital twin in the forensic identification of cardiovascular diseases. Digital Medicine. https://doi.org/10.1097/dm-2024-00013.

Guikema, S., & Flage, R. (2024). Digital twins as a security risk? Risk Analysis, 45, 269 - 273. https://doi.org/10.1111/risa.15749.

Sirigu, G., Carminati, B., & Ferrari, E. (2022). Privacy and Security Issues for Human Digital Twins. 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), 1-9. https://doi.org/10.1109/tps-isa56441.2022.00011.

Yi, H. (2023). Improving cloud storage and privacy security for digital twin based medical records. Journal of Cloud Computing, 12, 1-16. https://doi.org/10.1186/s13677-023-00523-6.

Popa, E., Van Hilten, M., Oosterkamp, E., & Bogaardt, M. (2021). The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sciences, Society and Policy, 17. https://doi.org/10.1186/s40504-021-00113-x.

Vallée, A. (2024). Envisioning the Future of Personalized Medicine: Role and Realities of Digital Twins. Journal of Medical Internet Research, 26. https://doi.org/10.2196/50204.

Marino, S., Cassidy, R., Nanni, J., Liu, Y., Tang, M., Chen, T., Pandian, B., Dinov, I., & Burns, M. (2025). Medical data sharing and synthetic clinical data generation – maximizing biomedical resource utilization and minimizing participant re-identification risks. NPJ Digital Medicine, 8. https://doi.org/10.1038/s41746-025-01935-1.

Alam, M., & Latifi, S. (2025). Early Detection of Alzheimer’s Disease Using Generative Models: A Review of GANs and Diffusion Models in Medical Imaging. Algorithms. https://doi.org/10.3390/a18070434.

Müller-Franzes, G., Niehues, J., Khader, F., Arasteh, S., Haarburger, C., Kuhl, C., Wang, T., Han, T., Nebelung, S., Kather, J., & Truhn, D. (2022). A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-39278-0.

Eichelberg, M., Kleber, K., & Kämmerer, M. (2020). Cybersecurity Challenges for PACS and Medical Imaging. Academic radiology. https://doi.org/10.1016/j.acra.2020.03.026.

Ozbey, M., Dar, S., Bedel, H., Dalmaz, O., Ozturk, c., Gungor, A., & cCukur, T. (2022). Unsupervised Medical Image Translation With Adversarial Diffusion Models. IEEE Transactions on Medical Imaging, 42, 3524-3539. https://doi.org/10.1109/tmi.2023.3290149.

Sorin, V., Barash, Y., Konen, E., & Klang, E. (2020). Creating Artificial Images for Radiology Applications Using Generative Adversarial Networks (GANs) - A Systematic Review.. Academic radiology. https://doi.org/10.1016/j.acra.2019.12.024.

Raj, S., Mathew, J., & Mondal, A. (2024). Generalized and robust model for GAN-generated image detection. Pattern Recognit. Lett., 182, 104-110. https://doi.org/10.1016/j.patrec.2024.04.018.

Cordero, D., & Barría, C. (2021). Cybersecurity Analysis in Nodes that Work on the DICOM Protocol, a Case Study. , 69-76. https://doi.org/10.1007/978-3-030-70416-2_9.

Kostenko O.V. Directions of development of law in the field of Internet of Things (IoT) and artificial intelligence. Actual problems of domestic jurisprudence. 2021. № 3. С. 130-136. DOI: https://doi.org/10.15421/392161

Downloads

Views: 44

  |  

Downloads: 13

Published

2025-12-15

Issue

Section

Health, Psychology, and Well-being

How to Cite

Strelnykov Mykhailo, Horobets Maria, & Kostenko Viktoria. (2025). SAFE USE OF DIGITAL MEDICAL DATA OF HIGH-TECH DIAGNOSTIC EXAMINATIONS IN EXPERT SIMULATION BASED ON VIRTUAL TWINS. Metaverse Science, Society and Law, 1(2). https://doi.org/10.69635/mssl.2025.1.2.28

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.